XEUS and eROSITA

Günther Hasinger

Columbia University, May 9, 2008

Telescope Structure

- CFRP Honeycomb Structure
 - leightweight
 - thermally stable
- Hexapod Mounting
 - no thermal/mechanical stresses induced on structure
- Sunshield
- startracker mounted on structure

New pn-CCD module

Frame Store Area

small cosmetic defects

First Fe⁵⁵ light on very first 384 x 768 Pixel eROSITA flight model chip (May 8th, 2008)

SRG eROSITA & SXC spectra 50 ksec NEP eRosita (7 telescope sum)

XMM COSMOS: An eROSITA preview

2 deg² survey image based on 55 XMM-Newton pointings of 1.4 Msec total (Hasinger et al. 2006)

SRG/eROSITA Observations

- Launch 2011 (2012?)
- 0.5 yrs long pointed observations (~1 Msec each) on SXC priority targets (mainly clusters)
- 4 yrs all-sky survey (including 0.5 yrs deep s.)
- 2.5 yrs pointed observations (cluster follow-up plus open AO)
- Data will be made public

The Mpc radio arcs in Abell 3376 (z=0.046)

Bagchi, Durret, Lima Neto & Paul 2006, Science 314, 791

Survey geometry

optimised for extragalactic sky (30,000 deg²) significant survey of Galactic plane (10,000 deg²) Pattern optimised for 400 deg² deep survey

Exposure map

Exposure rises towards the poles

Average exposure:

~ 1.5 ksec at SRG equator, ~ 32 ksec at poles $(2 \times 200 \text{ deg}^2)$

Simulations (by Martin Mühlegger)

Including:

- Mass function $N(M,z) \rightarrow N(L_X,z)$, assuming given L_X -M relation
- nH distribution
- L_X-T relation: $C(T,z,n_H) \rightarrow C(L_X,z,n_H) \rightarrow counts$

Not including (so far):

- Variable CXB
- Image simulations
- Source detection tests
- Completeness

Count limit 50 counts

 \Rightarrow 179,484 clusters; 155,182 with |b| > 20°

Cluster number map

Count limit 100 counts \Rightarrow 79,912 clusters; 69,809 with $|b| > 20^{\circ}$

Count limit 500 counts (measure kT) \Rightarrow 9,935 clusters; 8,910 with |b| > 20°

Count limit 1000 counts (measure kT, measre z from Fe line) \Rightarrow 3,675 clusters; 3,343 with |b| > 20°

Prospects of cluster surveys to various depth

Photoz

z = 0.8

z = 0.6

z = 0.4

z = 0.2

I_{AB}<25

1.4Mio galaxies

X-ray contours

What can you do with 100,000 clusters?

- 1. Cluster mass function N(M,z) depends mainly on the matter density Ω_m and the amplitude of the primordial power spectrum σ_8 \rightarrow Reiprich & Böhringer 2003
- 2. Evolution N(M,z) gives sensitive constraints on DM and DE $\rightarrow Vikhlinin$
- 3. Cluster power spectrum amplitude and shape depend on DM and DE
- 4. Baryonic wiggles due to acoustic oscillations at recombination give tight constraints on space curvature
- 5. Cluster baryon fraction as function of z gives constraints on DM and DE → Allen
- 6. Clusters provide direct distance measurements due to combined X-ray and SZ-measurements

Cluster Mass Function f(z)

→ There are more distant clusters for small -w!
But results are very sensitive to the mass scale

Evolution of Cluster Mass Function

A. Vikhlinin, priv. comm.

P(k) and Baryonic Wiggles 104 Baryonic Wiggles 100 1000

eROSITA BAO

Cluster Baryonic Wiggles

Springel et al., 2006

Constraints from 100K Cluster Survey

Time dependence of w_x

$$\mathbf{W}_{\mathbf{x}(\mathbf{z})} = \mathbf{W}_{\mathbf{0}} + \mathbf{W}_{\mathbf{a}}$$

$$p(z) = w_x(z) * \rho(z)$$

Results from the White Paper submitted to the NASA/DOE Dark Energy Task Force: Haiman et al., 2005, astro-ph/0507013

Mission Sensitivity & Angular resolution

XEUS Simulations

Courtesy T. Ohashi, WHIM conference

Expected number of absorption system per LOS $S/N \ge 3$

OVII (574 eV) 1.71 OVIII (654 eV) 0.43 OVII and OVIII 0.41 for 30 ksec obs.

 $N_{\text{OVII}} = 1.3 \times 10^{15} (EW/0.1 \text{eV}) \,\text{cm}^{-2}$

EW=0.05 eV 3σ for 30 ksec with XEUS

First groups at z~2

XEUS - Mission Profile

Separate Mirror and Detector Spacecraft.

35 m focal length maintained by Formation Flying

Both spacecraft launched by a single Ariane 5 to L2

Five years science operations

Optics development status

XEUS Petal at ESTEC

HPO Development status & outlook

Summary & Outlook

- SRG/eROSITA will provide powerful surveys for >100000 clusters which will be the basis for studies of cluster evolution and Dark Energy.
- Dark Energy constraints will be competitive with and complementary to several other "level four" DETF surveys planned in the next decade.
- A large future flagship X-ray mission (NGXT) is extremely important to push further into the Early Universe and most likely have to be done in global cooperation.

Thank you very much for your attention!